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The Problem
● Platforms like Gmail want to keep users safe from malware.
● To do this, files are scanned for malware.

● This helps to keep users safe.
● But there is a catch...
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The Problem

● Not even Google is safe from resource constraints!
● This resource constraint is caused by:

○ The large number of files shared every day.
○ Scans taking longer depending on file size.

3



The Problem

How to lower costs and avoid creating 
weaknesses in our system?
● Pick a few overall strong tools?

○ Attacker can learn what tools and analyses 
you’re using.

● Pick only the best tools based on which 
attacks are likely to be made.

○ An attacker could change their actions to 
exploit this prediction.

● So what should we do?
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This Problem in Another Context
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● Previous work has considered airport 
security.

● Security needs to defend airport from 
potential attacks.

● There are far too many ways an attack 
could be carried out to guard them all.

○ Can’t guard EVERY possible way in.
○ Can’t frisk/scan EVERY person coming into 

the airport.

● The best solutions in terms of security 
are also the most costly.

● So what’s the airport security to do?



Airport Security
● If they want to save resources, security could think of ways to reduce 

coverage:
○ Could simply guard fewer entry points?
○ Develop some rules for which people to search?
○ Regular patrols?

● So what’s the problem here?
○ Attacker will observe what security does and exploit any holes in a policy.

● What’s the solution?
○ Intelligent randomization.
○ The attacker will not be able to predict exactly what security will do.
○ Takes care of resource constraint issue.

● But what is the best way to randomize?
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Security Games
How do we find the optimal randomization? With a model!

● We can model security domains as Stackelberg security games, a concept 
from the field of game theory.

● These games involve two players, a defender and attacker.
○ These players act sequentially; defender first, attacker second.

● Both players take actions in order to maximize their utility.
○ But players must act strategically.

■ Attacker considers defender’s strategy

■ Defender must consider what an attacker would rationally do in response to their actions

■ i.e. they best respond
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Stackelberg Security Games
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1. Defender chooses a strategy.

3. Attacker chooses an action to take.

2. Attacker observes defender’s strategy for as 
long as they want.

4. Outcome is determined.

5. Players get utility based off of the outcome.

-5

+5



Back To Malware Detection...
● We model the relationship between security analyst and malicious party as a 

security game.

● The defender: security analyst
○ Not practical to use all available malware detection tools.

○ Different tools use different scanning strategies with different results.

○ Overlap in capabilities of tools can lead to inefficient use of resources.

● The attacker: malicious party
○ We assume they are strategic, i.e. will change their actions to maximize their utility in response 

to the defenders actions.

■ For this reason, the defender cannot rely on tools that have performed well in the past.
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Security Games for Malware Detection
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How does our proposed method of optimal 
randomization compare to other approaches?
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Baseline Defender Strategies

● Uniform Randomization (uall): Randomly pick schedules.

● Best Average Detection Rate (ba): Defender always chooses the schedule 
with the highest overall detection rate.

● Randomized Best Average Detection Rate (u10): Same as (ba), but 
uniformly randomized over the ten schedules with the highest overall 
detection rates.
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In order to evaluate optimal randomization, we need to choose some baseline 
strategies for choosing which sets of tools (or schedules) are used:



Baseline Defender Strategies
● Highest Expected Utility (e1): Defender chooses the schedule with the 

highest expected utility based off of a historical record of attacks.
○ This doesn’t consider how a best responding attacker might react to this.

● Randomized Highest Expected Utility (e10): Same as (e1), but uniformly 
randomized over the ten best schedules using that selection strategy.

● Deterministic Best Response (d_br): Our presented approach, but limited 
to a single schedule, rather than over possibly many schedules.
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Baseline Comparison
Optimal Randomization
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Is randomization always strictly beneficial?



Is randomization strictly beneficial?

All Files PDFs
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How sensitive is our model to changes to the 
balance between rewards and costs?



Cost-Weighting Values
Our model explicitly makes a tradeoff between cost 
and reward for each player.

Our model uses variable Ɣa and Ɣd to represent the 
trade-off between cost and reward.

Unlike other parameters, these cannot be learned 
from data easily.

We tested different values for Ɣa and Ɣd to see if 
changing them altered the effectiveness of our 
proposed methods.
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Effects of Changing Defender Cost-Reward Tradeoff
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Effects of Changing Attacker Cost-Reward Tradeoff



Conclusion
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● Ensuring the safety and security of exchanged files is a 
growing challenge faced by large software platforms.

○ Platforms are faced with resource constraints.
○ This prevents them from running all available tools.



Conclusion
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● Choosing how to best run analyses is a complicated task.
○ Different tools use different scanning strategies with different results.
○ Overlap in capabilities of tools can lead to inefficient use of resources.
○ Randomization leads to a reduction in the chance of attackers exploiting 

gaps in coverage.



Conclusion
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● To address these problems we presented an approach that uses 
stackelberg games.

○ These strategies can be solved for using a MILP.
○ This model was parameterized with real-world data from VirusTotal and NVD.



Conclusion
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● We evaluated our proposed method against a set of alternate strategies.
○ We found this it does as well as or outperforms all alternate strategies we considered.
○ We found that changing the free parameters in our model do not lead to qualitative differences 

in our results.
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Optimal Defender Strategies



Stackelberg Games
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● Schedules ~ S

● Detection 

probabilities ~ p(s,v)

● Rewards ~ ra, rd

● Vulnerabilities ~ V

● Costs ~ ca, cd
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Data Resources: VirusTotal

VirusTotal is an online platform that allows users to test any file for malware.

They also offer researchers access to a dataset of over 30,000 malware files and 
the results of malware scans of over 86 malware detection tools on those files.

This dataset allows us to understand how antimalware tools perform against real 
malicious software.
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What does VirusTotal give us?

Among the information contained in each of the 30,000+ malware scan results 
files was:

● For each tool, whether the file was flagged as malicious.
● The Common Vulnerabilities and Exposures (CVE) tag, denoting the type of 

malware that the file contains. 32



National Vulnerability Database (NVD)
We can use the CVE tags to look up attacks to the 
National Vulnerability Database, or NVD.

NVD provides a database indexed by CVE tag, which 
provides numeric representations of:

● The exploitability of vulnerabilities
○ We use this to represent the cost to attackers ca 

associated with attempting to exploit a 
vulnerability.

● The harm each vulnerability can cause if exploited.
○ We use this to represent the ra, rd rewards for 

when a vulnerability is exploited. 33



Cost to defender: False Positives
The tools in VirusTotal flagged between 25%-70% of all obfuscated, non-malicious 
files as malicious, according to a study by Zhu et al [1].

Having a tool falsely flag a non-malicious file imposes the risk of annoying 
end-users, so we represent the cost of using each tool with the false positive rate 
of each tool.

We calculate these rates by measuring how often each tool falsely flagged a safe 
file within the dataset provided alongside Zhu et al.’s publication. We then 
generalize these results to schedules.

[1] https://www.usenix.org/conference/usenixsecurity20/presentation/zhu
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